Linear Unit Part 1:

Solving Equations

\begin{tabular}{|c|c|c|c|c|}
\hline Solving 1 step equations with addition and subtraction \& A) \& $$
x+9=12
$$
$$
-12=12+x
$$ \& B)

D) \& $$
x-3=11
$$

$$
-15=-13+x
$$

\hline \& E) \& $14+x=-7$ \& F) \& $7=x+10$

\hline
\end{tabular}

2 | P a g e

Solving 1 step equationsith nuttipication and division.	A) $4 \mathrm{x}=16$	B) $30=-5 \mathrm{x}$	
	C) $-3 \mathrm{x}=-60$		
	D) $\frac{x}{5}=3$	E) $\frac{x}{-4}=5$	
	D) $\frac{3}{4} x=5$	E) $\frac{-5}{3} x=-2$	

3|Page

Solving 2 step equations	1. $9=\frac{x}{2}+4$	2.	$9=\frac{x}{2}+4$
Getting rid of fractions first			

Multi-Step Equations with distributive property (no negative coefficients) - Do 2 with Distributive Property First - Do 2 with Dividing First	1. $5(3 x+3)=75$ 3. $3(5 x-4)=48$	2. $3(2 x+4)=30$ 4. $2(3 \mathrm{x}-2)=26$
	1. $-5(4 \mathrm{x}+4)=80$	2. $4(-5 x+4)=76$
Multi-Step Equations with distributive property (negative coefficients)		
	3. $-3(-4 x-4)=24$	4. $2(-2 x-3)=24$

7|Page

8| Page

10 \| Page

Multi-Step Equations with like terms on both sides without distributive property	1. $5 x=3 x-8$	2. $6 x=4 x-12$
	3) $7 x-2=5 x+10$	4) $-7 x+15=-3+2 x$

11 | Page

Multi-Step Equations with like terms on both sides with distributive property	1. $2(x-5)=3 x+1$ 2. $5(x+3)=2 x-9$
	1. $4(x+3)=2(x-6) \quad$ 2. $3(x+2)=4(x-10)$

| Multi-Step Equations
 anything goes | $3 . \quad 9(w-4)-7 w=5(3 w-2)$ |
| :--- | :--- | :--- |
| 4 | |
| | |
| | |

Solve the Two-Step Equations - Integers

$3 x+7=-11+2 x$	$\frac{2 m+3}{m}=1$
$-5(2-w)=10$	$a-2=\frac{a}{3}$

$\frac{b-1}{2}=b$	$10-3 k=-5 k$

15 \| Page

Solve $C=2 \pi r$ for r	For each of the following geometric formulas, Solve 1. If a circular pool is 100 ft around, what is the pools radius. ror thed variable and answer the questions.
Solve A = lw for I	
1. If the width of a	
rectangular sandbox	
is 20 feet, what	
length is required to	
obtain an area of	
300 square feet.	
2. If the width of	
the sandbox was to	
decrease and the	
area was to remain	
200 square feet,	
how would the length	
change?	

Solve $P=21+2 w$ for I

1. If you have 100 feet of lumber to construct the sides of a sandbox, and the width is set at 25 feet, how long can the sandbox be?
2. If the width of the sandbox was to increase, but the perimeter was to remain at 100 feet, how would the length have to change?

Solve V=lwh for w

1. In designing a box to have a volume of 500 cm 3 , length 10 , and height 15 , what is the width?
2. If the volume of the box was to increase, but the length and height were to remain unchanged, how would the width have to change?

17 | Page

18 \| Page

19 \| Page

Rewrite the equation so that y is a function of x Then use the result to find y when $x=0,5,7,10$	$1 . y-4 x=9$	2.	$6 y-6 x=15$
$3.4-y=7 x$	4. $\frac{1}{3} y-5=6 x$		
$5.2 x+y=4$	$6.5 x-5 y=15$		

Linear Unit Part 5:

Solving Inequalities

22 | Page

23 | Page

25 \| Page

Unit 3: Lesson 2: Linear Equations and Inequalities

Investigation 1: Who will be the doctor? (p. 188)
How can you use tables and graphs to estimate solutions of equations and inequalities?

The trends in percent of male and female medical doctors can be modeled by these linear functions
Percentage of Male Doctors: $y_{1}=98-0.54 t$
Percentage of Female Doctors: $y_{2}=2+0.54 t$
Here y_{1} and y_{2} represent the percentage of male and female U.S. medical doctors at a time t years after 1960

Write equations or inequalities that can be used to estimate answers for each of these questions about the percentage of male and female medical doctors in the United States.
a. In 1985, what percent of U.S. medical doctors were male?
b. When will the percent of male doctors fall to 40% ?
c. How long will the percent of female doctors remain below 60% ?
d. When will the percent of male doctors decline to only double the percent of female doctors?

Percentage of Male Doctors: $y_{1}=98-0.54 t$, where t is the number of years since 1960
Percentage of Female Doctors: $y_{2}=2+0.54 t$, where t is the number of years since 1960
2. Write questions about trends in percent of male and female medical doctors that can be answered by solving these equations and inequalities.
a. $98-0.54 t=65$
b. $y_{2}=2+0.54(50)$
c. $2+0.54 t<30$
d. $98-0.54 t<2+0.54 t$
e. $98-0.54 t=4(2+0.54 t)$

Trends in Gender

t, years	$\boldsymbol{y}_{\mathbf{1}}=\mathbf{9 8}-$	$\boldsymbol{y}_{\mathbf{2}}=\mathbf{2}+$
after 1960	$\mathbf{0 . 5 4 t}$	$\mathbf{0 . 5 4 t} \boldsymbol{t}$
0	98	2
10	92.6	7.4
20	87.2	12.8
30	81.8	18.2
40	76.4	23.6
50	71	29
60	65.6	34.4
70	60.2	39.8
80	54.8	45.2
90	49.4	50.6

3. Solve the inequalities below by using the graph or the tables
a. $\quad y_{2}=2+0.54(40)$
b. $\quad 98-0.54 t=90$
b. $98-0.54 t=2+0.54 t$
d. $\quad 98-0.54 t>80$
e. $y_{1}=98-0.54(65)$
g. $\quad 98-0.54 t=4(2+0.54 t)$
h. $\quad 70=2+0.54 t$

31 | Page

Trends in Gender

t, years		
after 1960	$\boldsymbol{y}_{\mathbf{1}}=\mathbf{9 8}-$ $\mathbf{0 . 5 4 t} \boldsymbol{t}$	$\boldsymbol{y}_{\mathbf{2}}=\mathbf{2}+$ $\mathbf{0 . 5 4 t}$
0	98	2
10	92.6	7.4
20	87.2	12.8
30	81.8	18.2
40	76.4	23.6
50	71	29
60	65.6	34.4
70	60.2	39.8
80	54.8	45.2
90	49.4	50.6

4. Write equations and inequalities to represent the following questions. Then use tables or graphs to estimate the solutions for the equations
a. When will the percent of male doctors decline to 55% ?
b. When will the percent of female doctors reach 35% ?
c. How long will the percent of male doctors be above 40% ?
d. What percent of U.S. medical doctors will be male when you are 20 years old?
e. Assuming the trends shown in the graph on, when will the percent of female doctors be more than the percent of male doctors?

32 | Page

