Modeling Part 1

Test Review

Evaluate.

$$f(x) = -10 + 5x$$

1.
$$f(2) =$$

2.
$$f(x) = 10$$

3.
$$f(-3) = 4$$
. $f(x)$

4.
$$f(x) = -x^2$$

Given the recursive rule, write the first 5 terms

1.
$$a_n = a_{n-1} + 5$$
 $a_0 = -6$ 2. $a_n = a_{n-1} - 2$ $a_0 = 20$

3.
$$a_{n+1} = a_n + 3$$
 $a_1 = 2$ 4. $a_{n+1} = a_n - 10$ $a_1 = -5$

Write the function rule for the given table

X	0	1	2	3	4
f(x)	-1	3	7	11	15

Write the recursive rule for the given table

n	0	1	2	3	4
a_n	-1	3	7	11	15

Write the function rule for the given table

X	1	2	3	4	5
f(x)	4	12	20	28	36

Write the recursive rule for the given table

n	1	2	3	4	5
a_n	4	12	20	28	36

Some cleaning companies have their employees go door to door to sell their products. Tim earns a base salary plus a commission on each sale. His weekly earnings depend on the number of cleaning products he sales as shown in the table

Number of	4	8	12	16
Cleaning				
Products Sold				
Weekly Earnings	1000	1400	1800	2200
(in dollars)				

- a. Determine the rate of change in earnings as sales increase.
- b. What would **Tim's earning** be for a week in which he **sold zero** cleaning products?
 - c. Use your answers from part a and b to write a rule in function form.
- d. What would **Tim's weekly earning** be if he sold **50** cleaning products?