Writing Terms of a Geometric Sequence

Given the function/explicit rule write the first 5 terms of the function

1.
$$f(x) = 10(2)^x$$

2.
$$f(x) = 500 \left(\frac{1}{5}\right)^{x-1}$$

3.
$$f(x) = 10(.5)^x$$

4.
$$f(x) = 20(3)^{x-1}$$

Given the recursive rule write the first 5 terms of the sequence

1.
$$a_n = 5a_{n-1}$$
 $a_0 = 2$ 2. $a_n = \frac{1}{2}a_{n-1}$ $a_0 = 50$

3.
$$a_{n+1} = \frac{3}{4}a_n$$
 $a_1 = 75$ 4. $a_{n+1} = 2a_n$ $a_1 = 3$

Given the function/explicit rule write the first 5 terms of the function

1.
$$f(x) = 4(3)^x$$

2.
$$f(x) = 100 \left(\frac{1}{2}\right)^{x-1}$$

3.
$$f(x) = 100(.2)^x$$

4.
$$f(x) = 3(2)^{x-1}$$

Given the recursive rule write the first 5 terms of the sequence

1.
$$a_n = 7a_{n-1}$$
 $a_0 = 1$ 2. $a_n = \frac{1}{3}a_{n-1}$ $a_0 = 90$

3.
$$a_{n+1} = \frac{3}{5} a_n$$
 $a_1 = 75$ 4. $a_{n+1} = 4a_n$ $a_1 = 10$

Given the function/explicit rule write the first 5 terms of the function

1.
$$f(x)=1.5(2)^x$$
 2. $f(x)=1000\left(\frac{1}{2}\right)^{x-1}$

Given the recursive rule write the first 5 terms of the sequence

1.
$$a_n = 4a_{n-1}$$
 $a_0 = 2$ 2. $a_{n+1} = \frac{2}{7}a_n$ $a_1 = 2$

Write the function/explicit rule and the recursive rule

X	0	1	2	3	4
f(x)	3	15	75	375	1875

Write the function/explicit rule and the recursive rule

X	0	1	2	3	4
f(x)	2	6	18	54	62