Let f be a function that has derivatives of all orders for all real numbers. Assume $f(1) = 3$, $f'(1) = -2$, $f''(1) = 2$, and $f'''(1) = 4$.

1. Write the second-degree Taylor polynomial for $f(x)$ about $x = 1$ and use it to approximate $f(0.7)$.

2. Write the third-degree Taylor polynomial for $f(x)$ about $x = 1$ and use it to approximate $f(1.2)$.

2000- BC 3

The Taylor series about $x = 5$ for a certain function converges to $f(x)$ for all x in the interval of convergence. The nth derivative of $f(x)$ at $x = 5$ is given by $f^{(n)}(5) = \frac{(-1)^n n!}{2^n (n + 2)}$, and $f(5) = \frac{1}{2}$.

3. Write the third-degree Taylor polynomial for $f(x)$ about $x = 5$.

4. Find the radius of convergence of the Taylor series representation for $f(x)$ about $x = 5$.
The Maclaurin series for \(f(x) \) is given by \[1 + \frac{x}{2!} + \frac{x^2}{3!} + \frac{x^3}{4!} + \ldots + \frac{x^n}{(n+1)!} + \ldots \]

5. Find \(f'(0) \) and \(f^{(17)}(0) \).

6. Let \(g(x) = xf(x) \). Write the Maclaurin series for \(g(x) \), showing the first three nonzero terms and the general term.

7. Let \(f \) be the function given by \(f(x) = \ln(5 - x) \). Find the third degree Taylor polynomial for \(f \) about \(x = 4 \).

8. If \(f(x) = x\cos(2x) \), write the Taylor Series for \(f \) about \(x = 0 \)?