1. $f(x)=\frac{1}{1+x^{2}}$ centered at $\mathrm{x}=0$
a. Given the function, find the sixth order polynomial
c. Use the alternate estimation theorem to determine the error bound $|f(x)-P(x)| \leq R$ at $\quad \mathrm{x}=-.1$
2. $\quad f(x)=\sin (3 x)$ centered at $\mathrm{x}=0$
a. Given the function, find the 2 nd order polynomial
c. Use the alternate estimation theorem to determine the error bound $|f(x)-P(x)| \leq R$ at $\quad \mathrm{x}=-.1$
3. $f(x)=\cos (4 x)$ centered at $\mathrm{x}=0$
a. Given the function, find the third order polynomial
c. Use the alternate estimation theorem to determine the error bound $|f(x)-P(x)| \leq R$ at $\quad \mathrm{x}=.1$
4. $\quad f(x)=\ln \left(1+x^{2}\right)$ centered at $\mathrm{x}=0$
a. Given the function, find the fifth order polynomial
c. Use the alternate estimation theorem to determine the error bound $|f(x)-P(x)| \leq R$ at $\quad \mathrm{x}=.1$
5. $\quad f(x)=x^{-3}$ centered at $\mathrm{x}=1$
a. Given the function, find the third order polynomial
c. Use the alternate estimation theorem to determine the error bound $|f(x)-P(x)| \leq R$ at $\quad \mathrm{x}=1.1$
