Alternating Estimation Theorem

1.
$$f(x) = \frac{1}{1+x^2}$$
 centered at $x = 0$

a. Given the function, find the sixth order polynomial

c. Use the alternate estimation theorem to determine the error bound $|f(x) - P(x)| \le R$ at x = -.1

2.
$$f(x) = \sin(3x)$$
 centered at $x = 0$

- a. Given the function, find the 2nd order polynomial
- c. Use the alternate estimation theorem to determine the error bound $|f(x) P(x)| \le R$ at x = -.1

3.
$$f(x) = \cos(4x)$$
 centered at $x = 0$

- a. Given the function, find the third order polynomial
- c. Use the alternate estimation theorem to determine the error bound $|f(x) P(x)| \le R$ at x = .1

4.
$$f(x) = \ln(1+x^2)$$
 centered at $x = 0$

- a. Given the function, find the fifth order polynomial
- c. Use the alternate estimation theorem to determine the error bound $|f(x) P(x)| \le R$ at x = .1
- 5. $f(x) = x^{-3}$ centered at x = 1
- a. Given the function, find the third order polynomial
- c. Use the alternate estimation theorem to determine the error bound $|f(x) P(x)| \le R$ at x = 1.1