Area between Curves

2014 BC5

5. Let R be the shaded region bounded by the graph of $y=x e^{x^{2}}$, the line $y=-2 x$, and the vertical line $x=1$, as shown in the figure above.
a) Find the area of R.

2011 AB \#3

Let R be the region in the first quadrant enclosed by the graphs of $f(x)=8 x^{3}$ and $g(x)=\sin (\pi x)$, as shown in the figure.

Find the area of R.

2011 BC Form B

The functions f and g are given by $f(x)=\sqrt{x}$ and $\mathrm{g}(\mathrm{x})=6-\mathrm{x}$. Let R be the region bounded by the $\mathrm{x}-$ axis and the graphs of f and g , as shown in the figure above.
a) Find the area of R

$\underline{2010 \text { \#4 }}$

Let R be the region in the first quadrant bounded by the graph of $\mathrm{y}=2 \sqrt{x}$, the horizontal line $\mathrm{y}=6$, and the y-axis, as shown in the figure.

Find the area of R.

2010 Form B BC1

In the figure, R, is the shaded region in the first quadrant bounded by the graph $y=4 \ln (3-x)$, the horizontal line $\mathrm{y}=6$, and the vertical line $\mathrm{x}=2$.
a. Find the area of R

Let R be the region in the first quadrant enclosed by the graphs of $y=2 x$ and $y=x^{2}$, as shown in the figure.

Find the area of R.

2008 BC1

Let R be the region bounded by the graphs of $y=\sin (\pi x)$ and $y=x^{3}-4 x$, as shown in the figure.
a. Find the area of R.
b. The horizontal line $y=-2$ splits the region R into two parts. Write, but do not evaluate, an integral expression for the area of the part of R that is below the horizontal line.
83. What is the area enclosed by the curves $y=x^{3}-8 x^{2}+18 x-5$ and $y=x+5$.
A) 10.667
B) 11.8333
C) $\quad 14.583$
D) 21.333
E) 32

2009 Form B BC1

A baker is creating a birthday cake. The base of the cake is the region R in the first quadrant under the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ for $0 \leq x \leq 30$, where $f(x)=20 \sin \left(\frac{\pi x}{30}\right)$. Both x and y are measured in centimeters.
The region R is shown in the figure above. The derivative of f is $f^{\prime}(x)=\frac{2 \pi}{3} \cos \left(\frac{\pi x}{30}\right)$.
b. The region R is cut out of a 30-centimeter-by-20-centimeter rectangular sheet of cardboard, and the remaining cardboard is discarded. Find the area of the discarded cardboard.

2010 BC5 (Form B) No Calculator

Let f and g be the functions defined by $f(x)=\frac{1}{x}$ and $\mathrm{g}(\mathrm{x})=\frac{4 \mathrm{x}}{1+4 \mathrm{x}^{2}}$, for all $\mathrm{x}>0$.
a) Find the area of the unbounded region in the first quadrant to the right of the vertical line $x=1$, below the graph of f, and above the graph of g.

2007 BC 1
Let R be the region in the first and second quadrants bounded above the graph of $y=\frac{20}{1+x^{2}}$ and below by the horizontal line $\mathrm{y}=2$.
a. Find the area of R.

2007 Form B BC 1

Let R be the region bounded by the graph of $y=e^{2 x-x^{2}}$ and the horizontal line $\mathrm{y}=2$, and let S be the region bounded by the graph of $y=e^{2 x-x^{2}}$ and the horizontal line $\mathrm{y}=1$ and $\mathrm{y}=2$, as shown in the graph.
a. Find the area of R.
b. Find the area of S.

