
5. Let R be the shaded region bounded by the graph of $y=x e^{x^{2}}$, the line $y=-2 x$, and the vertical line $x=1$, as shown in the figure above.
c) Write, but do not evaluate, an expression involving one or more integrals that gives the perimeter of R.

2011 BC 3

Let $f(x)=e^{2 x}$. Let R be the region in the first quadrant bounded by the graph of f , the coordinate axes and the vertical line $\mathrm{x}=\mathrm{k}$, where $\mathrm{k}>0$. The region R is shown in the figure.
a. Write, but do not evaluate, an expression involving an integral that gives the perimeter of R in terms of k .

2009 Form B BC1

A baker is creating a birthday cake. The base of the cake is the region R in the first quadrant under the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ for $0 \leq x \leq 30$, where $f(x)=20 \sin \left(\frac{\pi x}{30}\right)$. Both x and y are measured in centimeters. The region R is shown in the figure above. The derivative of f is $f^{\prime}(x)=\frac{2 \pi}{3} \cos \left(\frac{\pi x}{30}\right)$.
c. Find the perimeter of the base of the cake.

15. The length of a curve from $\mathrm{x}=1$ to $\mathrm{x}=4$ is given by $\int_{1}^{4} \sqrt{1+9 x^{4}} d x$. If the curve contains the point $(1,6)$, which of the following could be an equation for this curve?
A) $y=3+3 x^{2}$
B) $y=5+x^{3}$
C) $y=6+x^{3}$
D) $y=6-x^{3}$
E) $y=\frac{16}{5}+x+\frac{9}{5} x^{5}$

No Calculator
4. Which of the following integrals gives the length of the curve $\mathrm{y}=\ln \mathrm{x}$ from $\mathrm{x}=1$ to $\mathrm{x}=2$?
A) $\int_{1}^{2} \sqrt{1+\frac{1}{x^{2}}} d x$
B) $\int_{1}^{2}\left(1+\frac{1}{x^{2}}\right) d x$
C) $\int_{1}^{2} \sqrt{1+e^{2 x}} d x$
D) $\int_{1}^{2} \sqrt{1+(\ln x)^{2}} d x$
E) $\int_{1}^{2}\left(1+(\ln x)^{2}\right) d x$

