

1 P a g e

$\mathbf{5} \mid \mathrm{Page}$

$7 \mid P \mathrm{age}$

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives 3.5: Derivatives of Trig Functions pg. 141-147

$\left.\begin{array}{|l|l|l|l}\hline \text { Find equations for the lines that are tangent and normal to the } \\ \text { graph of } y=2 \cos x \text { at } x=\frac{\pi}{4}\end{array}\right]$

11 |P a g e

$\mathbf{1 2 | P a g e}$

CALCULUS: Graphical,Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives 3.6: Chain Rule pg.148-156

	E) $y=5 \sqrt{\sin (2 x)+\cos (2 x)}$
	E) $y=(\sin x+\cos x)^{-2}$
	F) $y=\frac{1}{\left(\sin \left(x^{3}\right)+\cos \left(x^{3}\right)\right)^{4}}$

$\mathbf{1 4} \mid \mathrm{Pa} \mathrm{g} \mathrm{e}$

$\mathbf{1 5} \mid \mathrm{Page}$

$\mathbf{1 6 | P a g e}$

17 | Page

$19 \mid$ Page

$\mathbf{2 0 | P a g e}$

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives 3.8: Derivatives of Inverse Trig Functions pg.165-171

What you'll Learn About

- How to find the derivative of inverse functions

Find the derivative of the inverse sine function using implicit differentiation

	2. Let f be a differentiable function such that $f(3)=5, f(8)=4, f^{\prime}(3)=6$ and $f^{\prime}(8)=3$. The function g is differentiable and $g(x)=f^{-1}(x)$ for all x. What is the value of $g^{\prime}(4)$? a) $-1 / 2$ b) $-1 / 8$ c) $1 / 6$ d) $1 / 3$ e) The value of $g^{\prime}(4)$ cannot be determined 3. Let f be a differentiable function such that $f(3)=5, f(8)=4, f^{\prime}(3)=6$ and $f^{\prime}(8)=3$. The function g is differentiable and $g(x)=f^{-1}(x)$ for all x. What is the value of $g^{\prime}(5)$? a) $-1 / 2$ b) $-1 / 8$ c) $1 / 6$ d) $1 / 3$ e) The value of $g^{\prime}(5)$ cannot be determined 4. If $f(2)=-3, \mathrm{f}^{\prime}(2)=\frac{4}{3}$, and $\mathrm{g}(\mathrm{x})=\mathrm{f}^{-1}(x)$, what is the equation of the tangent line to $g(x)$ at $\mathrm{x}=-3$? A) $y-2=\frac{-3}{4}(x+3)$ B) $y+2=\frac{-3}{4}(x-3)$ C) $y-2=\frac{3}{4}(\mathrm{x}+3)$ D) $y+3=\frac{3}{4}(x-2)$ E) $y-2=\frac{4}{3}(x+3)$

$\mathbf{2 6} \mid \mathrm{P}$ a g e

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives 3.9: Derivatives of Exponential and Logarithmic Functions

29 |P a g e

How to take the derivative of functions in Parametric Form

Graph the parametric function given
A) $x=\mathrm{t}^{2}-3 \quad \mathrm{y}=\mathrm{t} \quad \mathrm{t} \geq 0$
B) Find the derivative of the function at $t=5$
C) Find the equation of the tangent line at $\mathrm{t}=1$
$x=3 t \quad \mathrm{y}=9 \mathrm{t}^{2}$
D) Find the equation of the tangent line at $\theta=\frac{\pi}{4}$
$x=\cos \theta \quad y=\sin \theta$
E) Find the equation of the tangent line at $t=\pi$ $x=\sec ^{2}(2 t)-1 \quad \mathrm{y}=\tan (2 \mathrm{t})$

$32 \mid \mathrm{Page}$

$\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}$
$\frac{d}{d x}\left(a^{u}\right)=a^{u} \ln a \frac{d u}{d x}$
$\frac{d}{d x} \ln u=\frac{1}{u} \frac{d u}{d x}$
$\frac{d}{d x} \log _{a} u=\frac{1}{u \ln a} \frac{d u}{d x}$

The derivative of a^{x} is:
(Itself) $(\ln$ of the base)(Derivative of the power)

The derivative of a^{x} is: (Itself)(ln of the base)(Derivative of the power)

The derivative of $\ln u$ is:
(one over what you are taking the \ln of) times now you should be in the numerator (Derivative of what you are taking the \ln of)

$$
\frac{d}{d x} \sin ^{-1} u=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}
$$

- One over the square root of 1 - the ratio squared all times the derivative of the ratio.

$$
\frac{d}{d x} \cos ^{-1} u=-\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}
$$

- Negative One over the square root of 1 - the ratio squared all times the derivative of the ratio.

	When you do the power rule the base does not change only the power - Once you have done the power rule, you are done with the powers When you do the derivative of a trig function the angle does not change Chain Rule - Polynomial - (Power Rule)(Derivative Base) $\begin{aligned} & y=\left(1+x^{2}\right)^{5} \\ & y^{\prime}=5\left(1+x^{2}\right)^{4} \cdot 2 x \end{aligned}$ - Trig Function - (Power rule)(Derivative of base)(Derivative of angle) $\begin{aligned} & y=\sin ^{5}(3 x) \\ & y^{\prime}=5 \sin ^{4}(3 x) \cdot(\cos (3 x)) \cdot 3 \end{aligned}$

Chain Rule

- Product and quotient rule over rule everything when you have 2 functions

$$
\begin{aligned}
& y=x(\sin 3 x)^{1 / 2} \\
& y^{\prime}=x\left[\frac{1}{2}(\sin 3 x)^{-1 / 2} \cdot(\cos (3 x)) \cdot 3\right]+(\sin 3 x)^{1 / 2}
\end{aligned}
$$

- If the base is a product or quotient rule then you must start with the power rule
$y=(x \sin 3 x)^{1 / 2}$
$y^{\prime}=\frac{1}{2}(x \sin 3 x)^{-1 / 2} \cdot[x(\cos (3 x)) \cdot 3]+(\sin 3 x)$

