CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg. 116-126

Find the derivative using the power rule
D)
$$f(x) = 3 + x^2 \cdot x^3 + x^5$$

E) $y = \frac{x^4}{5} + 3x^2$
F) $y = x^{-3}$
G) $y = \frac{x^{-3}}{3} + \frac{x^{-3}}{4} - \frac{1}{x}$
H) $f(x) = 4\sqrt{x} - \frac{1}{x} + \frac{2}{\sqrt{x}}$
Find the Horizontal Tangents of each curve
D) $x^3 + 2x^2 = 0$
D) $\frac{2}{3}x^3 - \frac{5}{2}x^2 - 3x = 0$

Using Algebra and the Product Rule to take a derivative
J)
$$y = (x^2 + 3)(x^3 - x)$$
 J) $y = (x^2 + 3)(x^3 - x)$
Using Algebra and the Quotient Rule to take a derivative
K) $f(x) = \frac{x^2 + 9}{x}$ K) $f(x) = \frac{x^3 + 9}{x}$
Take the Derivative of the function
L) $y = (x^2 + x + 2)(x^3 + x^3 + 5x)$

Take the Derivative of the function
M)
$$f(x) = \frac{x^4}{2 - x^2}$$
N) $f(x) = (5 - x^2)(3 - x)^{-4}$

() $f(x) = \frac{(x + 3)(x - 4)}{(x + 1)(x - 3)}$
P) $f(x) = \frac{\sqrt[3]{x} + 1}{\sqrt[3]{x} - 1}$

	٦

Chapter 3: 1	Derivatives 3.5: Derivatives of 11	rig Functions pg. 141-147
•	What you'll Learn About How to find the derivative of a trig function	
	A) $y = 5 + x^2 - tanx$	B) y = xsinx
	C) $y = \frac{4}{\cot \theta}$	C) $y = \frac{4}{\cot \theta}$
	D) $y = \frac{\sin \theta - \cos \theta}{\sec \theta + \csc \theta}$	

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives 3.5: Derivatives of Trig Functions pg. 141-147

Find equations for the lines that are tangent and normal to the graph of y = 2cosx at
$$x = \frac{\pi}{4}$$

Find the points on the curve y = cot x, $0 \le x \le \frac{\pi}{2}$, where the tangent line is parallel to the line y = -2x.

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives 3.6: Chain Rule pg. 148-156

$$E) \quad y = 5\sqrt{\sin(2x) + \cos(2x)}$$

$$E) \quad y = (\sin x + \cos x)^{-3}$$

$$F) \quad y = \frac{1}{(\sin(x^3) + \cos(x^3))^3}$$

G)
$$y = \frac{x^2}{\sqrt{1 + x^3}}$$

G) $y = \frac{x^2}{\sqrt{1 + x^3}}$
H) $y = (5x + \sqrt[3]{x})^4$

$$I) \quad y = x^{*}(3x - 6)^{5}$$

$$I) \quad y = \frac{1}{(1 - 2x)^{5}}$$

L)
$$y = \sqrt{3x \csc x}$$

M) $y = 3x\sqrt{\csc x}$
N) Find y" if $y = 9 \operatorname{col}\left(\frac{x}{3}\right)$

				eir deri	vatives have the
x	f(x)	x = 2 and x g(x)	k – J.		
2	8	2	1/3	-3	
3	3	-4	2π	5	
Evaluate the	e derivatives v	with respect to	Х		
A) 2f(x)) at $x = 2$			B)	f(x) + g(x) at $x = 3$
C) f(x)g	g(x) at $x = 3$			D)	$\frac{f(x)}{g(x)}$ at $x = 2$

$$E) \quad f(g(x)) \text{ at } x = 2$$

$$F) \quad \sqrt{f(x)} \text{ at } x = 2$$

$$G) \quad \frac{1}{g^{2}(x)} \text{ at } x = 3$$

$$F) \quad \sqrt{f^{2}(x) + g^{2}(x)} \text{ at } x = 2$$

Derivatives 3.8: Derivatives of Inverse Trig Functions pg.165-171 What you'll Learn About • How to find the derivative of inverse functions
Find the derivative of the inverse sine function using implicit differentiation

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy

A)
$$y = \arcsin(x^2)$$

B) $y = \arccos(\frac{1}{x})$
C) $y = x^2 \arccos(\sin x)$
D) $y = x\sqrt{1-x^2} + \arctan^3\sqrt{x}$
E) $f(x) = \arccos(5x^3 - \sin x)$
Find the equation of the tangent line
F) $y = \csc^3 x$ at $x = 2$

2.	Let f be a differentiable function such that $f(3) = 5$, $f(8) = 4$, $f'(3) = 6$ and
	f'(8) = 3.
	The function g is differentiable and
	$g(x) = f^{-1}(x)$ for all x. What is the value
	of <i>g</i> ′(4)?
a) -1	1/2 b) -1/8 c) 1/6 d) 1/3
-	The value of $g'(4)$ cannot be determined
CJ	The value of g (4) cannot be determined
3.	Let f be a differentiable function such that
0.	f(3) = 5, $f(8) = 4$, $f'(3) = 6$ and
	f'(8) = 3.
	The function g is differentiable and
	$g(x) = f^{-1}(x)$ for all x. What is the value
	of $g'(5)$?
	or g (5).
2)	1/2 b) $1/9$ c) $1/6$ d) $1/2$
	1/2 b) -1/8 c) 1/6 d) 1/3
e)	The value of $g'(5)$ cannot be determined
	4
4. <i>I</i> 1	$f f(2) = -3$, $f'(2) = \frac{4}{3}$, and $g(x) = f^{-1}(x)$,
wha	at is the equation of the tangent line to $g(x)$
at x	= -3?
A)	y-2 = $\frac{-3}{4}(x+3)$ B) y+2 = $\frac{-3}{4}(x-3)$
<i>C</i>)	$y-2 = \frac{3}{4}(x+3)$ D) $y+3 = \frac{3}{4}(x-2)$
E)	$y-2 = \frac{4}{3}(x+3)$
	3 (1 - 3)

5. If
$$f(2) = -3$$
, $f'(2) = \frac{-4}{3}$, and $g(x) = f^{-1}(x)$,
what is the equation of the tangent line to $g(x)$
at $x = -3$?
A) $y-2 = \frac{-3}{4}(x+3)$ B) $y+2 = \frac{-3}{4}(x-3)$
C) $y-2 = \frac{3}{4}(x+3)$ D) $y+2 = \frac{4}{3}(x-3)$
E) $y-2 = \frac{4}{3}(x+3)$
6. If $f(2) = -3$, $f'(2) = \frac{-3}{4}$, and $g(x) = f^{-1}(x)$,
what is the equation of the tangent line to $g(x)$
at $x = -3$?
A) $y-2 = \frac{-3}{4}(x+3)$ B) $y+3 = \frac{-4}{3}(x+2)$
C) $y-2 = \frac{3}{4}(x+3)$ D) $y+2 = \frac{4}{3}(x-3)$
E) $y-2 = \frac{-4}{3}(x+3)$ D) $y+2 = \frac{4}{3}(x-3)$

Derivatives S.S. Derivatives of Exponential and Logarithmic Functions What you'll Learn About How to take the derivative of exponential and logarithmic functions			
$A) y = 5^x$	$B) y = 7^{x^2}$		
$C) y = 5^{\sin x}$	$D) y = 6^{\arctan x^3}$		
$E) y = e^x$	$F) y = 5e^{5x}$		
$G) \qquad y = (5e)^{5x}$	$H) y = e^{\frac{-3}{4}x}$		
$I) y = x^3 e^{4x} - x^4 e^{2x}$	$B) y = 7^{x^2}$		

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives 3.9: Derivatives of Exponential and Logarithmic Functions

$$A) \quad y = \log_5(x^3) \qquad B) \quad y = \log_6 \sqrt[3]{x}$$

$$C) \quad y = \log_5\left(\frac{4}{x}\right) \qquad D) \quad y = \frac{5}{\log_7(x^2)}$$

$$E) \quad y = \ln x \qquad F) \quad y = \ln(x^4)$$

$$G) \quad y = (\ln x)^4 \qquad H) \quad y = \ln\left(\frac{5}{x}\right)$$

$$I) \quad y = x^3 \ln(x^2) \cdot \ln(\ln(\arcsin x))$$

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives 3.6/10.1: Derivatives of Parametric Equations

A curve C is defined by the parametric equations

$$x = t^2 - 4t + 1$$
 and $y = t^3$. Determine the equation of the
line tangent to the graph of C at the point (1, 64)?
Determine the horizontal and vertical tangents for the
parametric curve
A) $x = 1 - t \ y = t^3 - 4t$
B) $x = \cos\theta \ y = 2\sin(2\theta)$

$$\frac{d}{dx}e^{u} = e^{u}\frac{du}{dx}$$
The derivative of e^s is: (Itself)(Derivative of the power)

$$\frac{d}{dx}(a^{s}) = a^{u} \ln a \frac{du}{dx}$$
The derivative of a^{s} is: (Itself)(*In* of the base)(Derivative of the power)

$$\frac{d}{dx}\ln u = \frac{1}{u}\frac{du}{dx}$$
The derivative of *In u* is: (Itself)(*In* of the base)(Derivative of the power)
The derivative of *In u* is: (one over what you are taking the ln of) times now you should be in the numerator (Derivative of what you are taking the *In* of)

$$\frac{d}{dx} \sin^{-1} u = \frac{1}{\sqrt{1-u^{2}}}\frac{du}{dx}$$
• One over the square root of 1 – the ratio squared all times the derivative of the ratio.

$$\frac{d}{dx}\cos^{-1}u = -\frac{1}{\sqrt{1-u^{2}}}\frac{du}{dx}$$
• Negative One over the square root of 1 – the ratio.

$$\frac{d}{dx}\tan^{-1}u = \frac{1}{1+u^2}\frac{du}{dx}$$

• One over 1 + the ratio squared all times the derivative of the ratio.

$$\frac{d}{dx}\cot^{-1}u = -\frac{1}{1+u^2}\frac{du}{dx}$$

 Negative One over 1 + the ratio squared all times the derivative of the ratio.

$$\frac{d}{dx}\sec^{-1}u = \frac{1}{|u|\sqrt{u^2 - 1}}\frac{du}{dx}$$

• One over the absolute value of the ratio times the square root of the ratio squared minus 1 all times the derivative of the ratio.

$$\frac{d}{dx}\csc^{-1}u = -\frac{1}{|u|\sqrt{u^2 - 1}}\frac{du}{dx}$$

Negative One over the absolute value of the ratio times the square root of the ratio squared minus 1 all times the derivative of the ratio.

When you do the power rule the base does not change
only the power
- Once you have done the power rule, you are done
with the powersWhen you do the derivative of a trig function the angle
does not changeChain Rule• Polynomial
- (Power Rule)(Derivative Base)
$$y = (1 + x^2)^5$$

 $y' = 5(1 + x^2)^4 \cdot 2x$ • Trig Function
- (Power rule)(Derivative of base)(Derivative of angle)
 $y = \sin^5(3x)$
 $y' = 5 \sin^4(3x) \cdot (\cos(3x)) \cdot 3$

Chain Rule
• Product and quotient rule over rule everything
when you have 2 functions

$$y = x(\sin 3x)^{1/2}$$

$$y' = x[\frac{1}{2}(\sin 3x)^{-1/2} \cdot (\cos(3x)) \cdot 3] + (\sin 3x)^{1/2}$$
- If the base is a product or quotient rule then you
must start with the power rule

$$y = (x \sin 3x)^{1/2}$$

$$y' = \frac{1}{2}(x \sin 3x)^{-1/2} \cdot [x(\cos(3x)) \cdot 3] + (\sin 3x)$$