AP Problems Chapter 2

Limits
Calculator okay

81. The graph of the function \(f \) is shown below. The value of \(\lim_{x \to 1} \sin f(x) \) is

A) 0.909 B) 0.841 C) 0.141 D) -0.416 E) nonexistent

![Graph of f](image)

78. The graph of a function \(f \) is shown above. For which of the following values of \(c \) does \(\lim_{x \to c} f(x) = 1 \)?

A) 0 only B) 0 and 3 only C) -2 and 0 only D) -2 and 3 only E) -2, 0, and 3

1. If \(f(x) = -x^2 + x \), which of the following expressions represents \(f'(x) \)?

(A) \(\lim_{h \to 0} \frac{(-x^2 + x + h) - (-x^2 + x)}{h} \)
(B) \(\lim_{h \to 0} \frac{(-x^2 + x + h) - (-x^2 + x)}{h} \)

(C) \(\lim_{h \to 0} \frac{[-(x+h)^2 + (x+h)] - (-x^2 + x)}{h} \)
(D) \(\lim_{h \to 0} \frac{[-(x+h)^2 + (x+h)] - (-x^2 + x)}{h} \)

(E) None of the above
13. The graph of a function f is shown above. At which value of x is f continuous, but not differentiable?

A) a B) b C) c D) d E) e

76. The graph of the function f is shown above. Which of the following statements must not be true.

A) $f(a)$ exists
B) $f(x)$ is defined for $0 < x < a$
C) f is not continuous at $x = a$
D) $\lim_{x \to a} f'(x)$ exists
E) $\lim_{x \to a} f''(x)$ exists

19. $\lim_{h \to 0} \frac{f(4 + h) - f(4)}{h} = 6$ is equivalent to

(A) $f(4) = 6$
(B) $f'(h) = 2$
(C) $f'(4) = 6$
(D) $\lim_{h \to 0} \frac{f(h)}{h} = 6$
(E) $\lim_{h \to 0} \frac{f(4 - h) + f(4)}{h} = 6$
Let f be a function defined by

$$f(x) = \begin{cases}
1 - 2\sin x & \text{for } x \leq 0 \\
e^{-4x} & \text{for } x > 0
\end{cases}$$

Show that f is continuous at $x = 0$.

6. Let f be the function defined below. Which of the following statements about f are true?

$$f(x) = \begin{cases}
x^2 - 4 & \text{if } x \neq 2 \\
x - 2 & \text{if } x = 2
\end{cases}$$

I. f has a limit at $x = 2$
II. f is continuous at $x = 2$
III. f is differentiable at $x = 2$

A) I only
B) II only
C) III only
D) I and II only
E) I, II, and III only

1. Grass clippings are placed in a bin, where they decompose. For $0 \leq t \leq 30$, the amount of grass clippings remaining in the bin is modeled by $A(t) = 6.687(0.931)^t$, where $A(t)$ is measured in pounds and t is measured in days.

a) Find the average rate of change of $A(t)$ over the interval $0 \leq t \leq 30$. Indicate units of measure.

21. The line $y = 5$ is a horizontal asymptote to the graph of which of the following?

A) $y = \frac{\sin 5x}{x}$ B) $y = 5x$ C) $y = \frac{1}{x - 5}$ D) $y = \frac{5x}{1 - x}$ E) $y = \frac{20x^2 - x}{1 + 4x^2}$