AP Problems Chapter 2

Limits
Calculator okay
81. The graph of the function f is shown below. The value of $\lim _{x \rightarrow 1} \sin f(x)$) is
A) 0.909
B) 0.841
C) 0.141
D) -0.416
E) nonexistent

Graph of f

78. The graph of a function f is shown above. For which of the following values of c does $\lim _{x \rightarrow c} f(x)=1$?
A) 0 only
B) 0 and 3 only
C) -2 and 0 only
D) $\quad-2$ and 3 only
E) $\quad-2,0$, and 3

1. If $\mathrm{f}(\mathrm{x})=-\mathrm{x}^{2}+x$, which of the following expresssions represents $f^{\prime}(x)$?
(A) $\lim _{h \rightarrow 0} \frac{\left(-x^{2}+x+h\right)-\left(-x^{2}+x\right)}{h}$
(B) $\lim _{h \rightarrow \mathrm{x}} \frac{\left(-x^{2}+x+h\right)-\left(-x^{2}+x\right)}{h}$
(C) $\frac{\left[-(x+h)^{2}+(x+h)\right]-\left(-x^{2}+x\right)}{h}$
(D) $\lim _{h \rightarrow 0} \frac{\left[-(x+h)^{2}+(x+h)\right]-\left(-x^{2}+x\right)}{h}$
(E) None of the above

2. The graph of a function f is shown above. At which value of x is f continuous, but not differentiable?
A) a
B) b
C) c
D) d
E) e

3. The graph of the function f is shown above. Which of the following statements must not be true.
A) $f(a)$ exists
B) $\mathrm{f}(\mathrm{x})$ is defined for $0<\mathrm{x}<\mathrm{a}$
C) f is not continuous at $\mathrm{x}=\mathrm{a}$
D) $\lim _{x \rightarrow a} f(x)$ exists
E) $\lim _{x \rightarrow a} f^{\prime}(x)$ exists
4. $\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{h}=6$ is equivalent to
$(A) f(4)=6$
$(B) f(\mathrm{~h})=2$
(C) $f^{\prime}(4)=6$
(D) $\lim _{\mathrm{h} \rightarrow 0} \frac{f(h)}{h}=6 \quad(E) \lim _{\mathrm{h} \rightarrow 0} \frac{f(4-h)+f(4)}{h}=6$

Let f be a function defined by $f(x)=\left\{\begin{array}{lr}1-2 \sin x & \text { fo } \mathrm{r} \Phi 0 \\ e^{-4 x} & \text { for } 0\end{array}\right\}$

Show that f is continuous at $\mathrm{x}=0$.
6. Let f be the function defined below. Which of the following statements about f are true?

$$
f(x)=\left\{\begin{array}{ll}
\frac{x^{2}-4}{x-2} & \text { if } \mathrm{x} \neq 2 \\
1 & \text { if } \mathrm{x}=2
\end{array}\right\}
$$

I. $\quad \mathrm{f}$ has a limit at $\mathrm{x}=2$
II. f is continuous $x=2$
III. f is differentiable at $\mathrm{x}=2$
A) I only
B) II only
C) III only
D) I and II only
E) I, II, and III only

1. Grass clippings are place in a bin, where they decompose. For $0 \leq t \leq 30$, the amount of grass clippings remaining in the bin is modeled by $\mathrm{A}(\mathrm{t})=$ $6.687(0.931)^{t}$, where $A(t)$ is measured in pounds and t is measured in days.
a) Find the average rate of change of $\mathrm{A}(\mathrm{t})$ over the interval $0 \leq t \leq 30$. Indicate units of measure.
2. The line $y=5$ is a horizontal asymptote to the graph of which of the following?
A) $\mathrm{y}=\frac{\sin 5 \mathrm{x}}{\mathrm{x}}$
B) $y=5 x$
C) $y=\frac{1}{x-5}$
D) $y=\frac{5 x}{1-x}$
E) $y=\frac{20 x^{2}-x}{1+4 x^{2}}$
